D rawing Lewis Structures

A Tutoriall on Writing Lewis Dot Structure

Dr. Fred O mega G arces
Chemistry 100
Miramar College

Lewis Structure by Bond D etermination

1. Know how to determine the valence electron for all elements.
2. (Connectivity) From the Chemical Formula, determine the atom connectivity for the structure.
i. Given a chemical formula, $A B_{n}, A$ is the central atom and B flanks the A atom. i.e., $\mathrm{NH}_{3}, \mathrm{NCl}_{3}, \mathrm{NO}_{2}$. In these examples, N is central in the structure.
ii. H and F are never central atoms.
3. (\# of Bond) D etermine the number of bonds in the compound, by calculating the theoretical \mathbf{O} ctet electrons $(\mathbf{O e})$ minus the total val ence electrons (TV e). 0 -e is the theoretical number of electrons necessary for each atom in the structure to obtain a Noble G as electron configuration, while TVe is the actual number of total valence electron for each atom in the structure.
4. (Remaining e-) Calculate the number of remaining electrons in the compound by taking the total valence electron (TVe) minus the number of electrons that was used to form bonds.

Complete Lewis structure by drawing atomic connectivity. Write bonds in the structure and the place remaining electrons to selected atoms in the structure to give each atom an octet. Keep in mind that the H -atom is satisfied with 2 electrons.

Valence electrons for Elements

Recall how to determine the valence electron for the elements based on the elements position on the periodic table.

Lewis D ot Symbol

IA	IIA	HIA	IVA	VA	VIA	VIIA	VIIIA
H.							
Li.	-Be.	- B.	. 8	: \dot{N}	:Ó.	: ${ }_{\text {F }}$.	:N̈:
Na -	Mg.	, Al	. Sil	$: \dot{P}$: \dot{S}.	: $\ddot{\mathrm{Cl}}$.	$: \ddot{A r}:$
K.	-Ca-						

V alence electrons and number of bonds

Recall the number of bonds at atom prefers depending on the number of val ence electrons

Family	\rightarrow	\# Covalent Bonds*
Halogens F, Br, CI, I	$: \ddot{x} \cdot \quad \rightarrow$	1 bond often
Calcogens $0, s$	$\cdot \ddot{0} \cdot \rightarrow$	2 bond often
Nitrogen N, \mathbf{P}	- $\mathrm{N} \cdot \mathrm{C}$	3 bond often
$\begin{gathered} \text { Carbon } \\ \mathrm{c}, \mathrm{si} \end{gathered}$	$\cdot \mathrm{C} \cdot \longrightarrow$	4 bond always

In general, these are the number of bonds formed by these atoms.

Lew is Structure, O ctet Rule Guidelines When compounds are formed they tend to follow the O ctet Rule.

Octet Rule: Atoms will share e^{-}until it is surrounded by eight valence electrons.

Rules of the game-

i) O.R. works mostly for second period elements.

Many exceptions especially with 3rd period elements (d-orbitals)
ii) H prefers $2 e^{-}$(electron deficient)
iii) : C :

- N:
:Ö:
2u.p.
2 bonds
:F:

4 u.p	$3 u . p$	2 u.p.	1 u.p. up = unpaired e-	
4 bonds	3 bonds	2 bonds	1 bond	
$\mathrm{O}=\mathrm{C}=\mathrm{O}$	$\mathrm{N} \equiv \mathrm{N}$	$\mathrm{O}=\mathrm{O}$	$\mathrm{F}-\mathrm{F}$	

iv) $\mathbf{H \& F}$ are terminal in the structural formula (Never central)

Lewis Structure Tutorial

A tomic Connectivity

The atomic arrangement for a molecule is usually given.

In general when there is a single central atom in the molecule, $\mathrm{CH}_{2} \mathrm{ClF}, \mathrm{SeCl}_{2}, \mathrm{O}_{3}$ $\left(\mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{PO}_{4}{ }^{3}\right)$, the central atom is the first atom in the chemical formula.
Except when the first atom in the chemical formula is Hydrogen (H) or fluorine (F). In which case the central atom is the second atom in the chemical formula.

Find the central atom for the following:

1) $\mathrm{H}_{2} \mathrm{O}$
a) H
b) O
2) PCl_{3}
a) P
b) Cl
3) SO_{3}
a) S
b) O
4) $\mathrm{CO}_{3}{ }^{2-}$
a) C
b) 0
5) BeH_{2}
a) Be
b) H
6) IO^{3}
a) I
b) 0

Setting up Bond Table

Setting up the bond table requires the chemical formula, and determining the number of electrons around each atom.
A) Chemical Formula I.e., HNO_{3}
B) Oe - Octet Electrons (This is always either 8 (or 2 for H)
C) Tve-Total Valence Electron.

ChemFormula $\mathbf{H N O}_{3}$	Octet e- $\mathbf{0 e}$	Tot Val e- Tve
H	$\mathbf{1 \times 2 = 2}$	$\mathbf{1 \times 1 = 1}$
N	$\mathbf{1 \times 8 = 8}$	$\mathbf{1 \times 5 = 5}$
O	$\mathbf{3 \times 8 = 2 4}$	$\mathbf{3 \times 6 = 1 8}$
$\mathbf{3 4}$		

Calculating the Number of Bonds and the Remaining electrons

After setting up the bond table, calculate the number of bonds in the chemical specie and the number of electrons. The remaining electrons are place around the atoms in the chemical specie such that each atom obeys the octet rule

$\mathbf{H N O}_{3}$	$\mathbf{0 e}$	Tve	\# Bonding e	
Bond Table	$\mathbf{3 4}$	-	$\mathbf{2 4}$	$=10$
\#of Bonds			$10 / 2=\mathbf{5}$	
Remaining e	Tve(24) - electrons in Bond $(10)=\mathbf{1 4}$			

Putting it Together

1) Chemical formula:
HNO_{3}
2) Number of bonds $=5$
3) Remaining electrons $=14$
4) Lewis Structure with 5 bonds:
5) Atomic sequence:

O No
0
H

6) Complete Lewis Structure with 14 remaining electrons

Lewis Structure Tutorial
10.7.00 6:16 M

Lewis D ot Structure of CO_{2} by Bonds Table

A. Calculate Octet electrons (Oe) and Total Valence electrons to determine number of bonds

CO_{2}	Oe	TVe
1 C	$1 \cdot(8)=8$	$1 \cdot(4)=4$
2 O	$2 \cdot(8)=16$	$2 \cdot(6)=12$
Chg		
	24	16

B. Calculate the number of bonds in compound structure.
$\#$ bonds $=\frac{(\mathrm{Oe}-\mathrm{TVe})}{2}$
$=\frac{(24-16)}{2}=\frac{8}{2}=4$ bonds
C. Calculate the remaining electrons to add to structure to complete Lewis dot structure.
Remaining e- = TVe - e- used in bonding.

$$
=16-8=8 \text { e-Remaining }
$$

Writing Lewis Structure:
First determine atom connectivity keeping in mind that H and F can never be central atoms. Generally when given the formula, ABn, A is the central atom in the structure (but not always), and B atoms flank the central atom. Next use information from the above calculations. Total of $\mathbf{1 6 e}$ - in CO_{2}, of which 8 electrons are used to form 4 bonds and 8 remaining electrons are used to complete Lewis structure.

0 C 0
1,2. Write atom connectivity for CO_{2}.

3,4,5. Draw the four bonds in the structure.

$$
\ddot{g}=\mathrm{c}=\ddot{\circ}
$$

6. Place the remaining 8 electrons in the structure to complete the Lewis Structure

Lewis D ot Structure of $\mathrm{ClO}_{4}{ }^{-}$by Bonds Table

A. Calculate ($\mathrm{Oe} \mathrm{e}^{-}$) and (TVe)

ClO_{4}	Oe	TVe
1 Cl	$1 \cdot(8)=8$	$1 \cdot(7)=7$
40	$4 \cdot(8)=32$	$4 \cdot(6)=24$
Chg		1
		40
		32

B. Number of Bonds.
$\#$ bonds $=\frac{(40-32)}{2}=\frac{8}{2}=4$ bonds
C. Remaining electrons.

Remaining e- = 32-8 = 24 e-Remaining

Writing Lewis Structure:

3.4.5. Draw the | 6. Place the remaining 24 electrons |
| :--- |
| in the structure such that each atom |
| has an octet to complete the Lewis |
| four bonds in the |
| structure. |

Lewis Structures: Examples

Example
a) $\mathrm{CH}_{2} \mathrm{CIF}$

b) SO_{2}

c) $\mathrm{SO}_{4}{ }^{2-}$

0	0
0	0

Suminmanyy
 Lewis Structure D etermination:

- Molecular Formula
- Atomic Sequence (H and F areterminal)
- Determine the \# of bonds

Oe and TVe-

\# of Bonds $=(\mathrm{Oe}-\mathrm{TVe}) / 2$

- Determine remaining electrons
$\operatorname{Re}=\left(\mathrm{TVe}^{-}\right) \quad$ (\# e- in bonding)
- Make sure all atoms satisfy octet rule (Except H which is satisfied with 2 electrons)

