

Lewis Structure by Bond Determination

Lewis Structure Tutorial

10.7.00 6:16 M

Valence electrons for Elements

Recall how to determine the valence electron for the elements based on the elements position on the periodic table.

Lewis Dot Symbol IA IIA IIIA IVA VA VIA VIIA VIIIA н. :Ö· · 8 · Li + ·Be· ٠ċ٠ :N -÷F• :Ne: :ċi• ·Å. ·Š. :ś۰ :Þ. Na--Mg-: Ar : к. ·Ca· Lewis Structure Tutorial 10.7.00 6:16 M

Valence electrons and number of bonds

Recall the number of bonds at atom prefers depending
on the number of valence electrons

	Family		\rightarrow	# Covalent Bonds*
	Halogens F, Br, Cl, I	:x·	\rightarrow	1 bond often
Š	Calcogens O, S	٠Ö٠	\rightarrow	2 bond often
	Nitrogen N, P	• Ņ•	\rightarrow	3 bond often
-	Carbon C, Si	· ċ.	\rightarrow	4 bond always

Lewis Structure Tutorial

4

10.7.00 6:16 PM

Setting up Bond Table

Setting up the bond table requires the chemical formula, and determining the number of electrons around each atom.

A) Chemical Formula I.e., HNO₃

B) Oe - Octet Electrons (This is always either 8 (or 2 for H)

C) Tve - Total Valence Electron.

~	ChemFormula HNO ₃	Octet e- Oe	Tot Val e- Tve
5	Н	1 x 2 = 2	1 x 1 = 1
	Ν	1 x 8 = 8	1 x 5 = 5
	0	3 x 8 = 24	3 x 6 = 18
~		34	24

Note this receipt works only if the chemical specie obeys the octet rule. For chemical specie which violates the octet rule, this method must be modified.

Lewis Structure Tutorial

10.7.00 6:16 M

10.7.00 6:16 M

Calculating the Number of Bonds and the Remaining electrons

After setting up the bond table, calculate the **number of bonds** in the chemical specie and the number of electrons.

The **remaining electrons** are place around the atoms in the chemical specie such that each atom obeys the octet rule

HNO ₃	Oe		Tve	# I	Bonding e [.]
Bond Table	34	-	24	=	10
# of Bonds				10 /2 =	5
Remaining e-	Tve(24) - electrons in Bond (10) = 14				

Lewis Structure Tutorial

Lewis Dot Structure of CO₂ by Bonds Table

A. Calculate Octet electrons (Oe-) and Total Valence electrons to determine number of bonds

	CO ₂	Oe	TVe
	1 C	1•(8)= 8	$1 \cdot (4) = 4$
	20	2•(8)=16	$2 \cdot (6) = 12$
	Chg		
-	\sim	24	16

Writing Lewis Structure:

С

connectivity for CO₂.

1,2. Write atom

0

0

10

B. Calculate the number of bonds in compound structure.

bonds =
$$\frac{(Oe - TVe)}{2}$$

= $\frac{(24 - 16)}{2}$ = $\frac{8}{2}$ = 4 bonds

- C. Calculate the remaining electrons to add to structure to complete Lewis dot structure.
- Remaining $e_{-} = TVe_{-} e_{-}$ used in bonding. = 16 - 8 = 8 e⁻Remaining

6. Place the remaining 8 electrons in the

structure to complete the Lewis Structure

. .

10.7.00 6:16 M

First determine atom connectivity keeping in mind that H and F can never be central atoms. Generally when given the formula, ABn, A is the central atom in the structure (but not always), and B atoms flank the central atom. Next use information from the above calculations. Total of 16e- in CO_2 , of which 8 electrons are used to form 4 bonds and 8 remaining electrons are used to complete Lewis structure.

•

Lewis Structure Tutorial

o = c = o

bonds in the structure.

3,4,5. Draw the four

\sim Lewis Dot Structure of ClO_4^0 by Bonds Table $^{\prime}$

A. Calculate (Oe-) and (TVe)			
ClO ₄	Oe	TVe	
1 Cl	1 •(8)= 8	$1 \cdot (7) = 7$	

40

 $4 \cdot (6) = 24$

1 32

B.	Number	of Bonds.	

bonds = $\frac{(40-32)}{2} = \frac{8}{2} = 4$ bonds

C. Remaining electrons. Remaining e- = 32 - 8 = 24 e⁻Remaining

Writing Lewis Structure:

 $4 \cdot (8) = 32$

4 O

Chg

