| rests for Anions | | | | | |---|--|------------------------------------|---------------------------|--| | 8 Warm solution gently with slightly excess of NaOH(aq) | | Gas evolved turned red litmus blue | NH ₄ + present | | | | hexacyanoferrate(II) solution | White precipitate | Zn²+ present | | | 7 | (a) To the solution add ammonium sulphide solution or H ₂ S (b) To the solution add potassium | Dirty white precipitate | Zn²+ present | | | Test | | | |---|---|---| | (a) To the solution add silver : | Observation | Inference | | (a) To the solution add silver trioxonitrate(V) solution dilute trioxonitrate(V) asid salvi: | White ppt | CI ⁻ present | | + dilute trioxonitrate(V) acid solution in drops and in excess + NH ₄ OH(aq) in excess or | White ppt
White ppt dissolves | CI ⁻ confirmed | | (b) Salt solution + HNO ₃ aq + AgNO ₃ aq. To the mixture in (a) above + NH ₄ OH(aq) in excess | White ppt insoluble in HNO ₃ (aq), the white ppt dissolves | CI ⁻ present | | (c) To a salt sample add MnO ₂ and conc H ₂ SO ₄ and warm gently | Greenish yellow gas with
suffocating odour and turns
damp blue litmus paper red
and finally bleaches it | CI ⁻ present
The gas is CI ₂ (g) | | To the salt solution add dilute HCI(aq) or conc H ₂ SO ₄ | There is liberation of a gas, colourless gas which turns damp blue litmus paper red and turns lime water milky | The gas is CO ₂ . CO ₃ ² or HCO ₃ present | | To the salt solution and but an chloride solution and then add few drops of hydrogen chloride solution | White precipitate which does not dissolve in presence of hydrogen chloride acid White ppt soluble in excess dil HCI | SO ₄ ² · present | | or Salt solution + $Ba(NO_3)(aq)$ + dil HNO_3 | White ppt insoluble in dilute HNO ₃ | SO ₄ ²⁻ present | | | White precipitate soluble in dil HNO ₃ | SO ₃ ²⁻ | | Salt solution + acidified dil. K ₂ Cr ₂ O ₇ | The orange colour of $K_2Cr_2O_7$ turns green | SO ₃ ²⁻ confirmed | | To about 2 cm ³ of the clear solution add about 3 cm ³ of freshly prepared FeSO4(aq), then add about 3 cm ³ of conc H ₂ SO ₄ slowly down the side of the | A brown ring is formed at the junction of the two layers | NO ₃ confirmed,
the brown ring is
due to the formation
of FeSO ₄ .NO | | test tube held in a slanting position | | | 01 Reddish brown fumes evolved NO₃ Present | | compound | |----------------------------|---| | Appearance | Probable salt/compound Iron II salts, iron II salts and pale green | | Green | are usually r | | Yellow/brown | are usually pale gro Lead (II) oxide, iron (III) salt solution, candium sulphide- | | Black or red | yellow, Gus Ag,S, HgS | | White colourless | CuO, Pbs, Cu3, 7-62 Ca ²⁺ , Pb ²⁺ , NH ⁴⁺ , Na ⁺ , Al ³⁺ , Zn ² +, salts and ZnS, MnS | | Smell of ammonia | Ammonium salt | | Smell of sulphur | Trioxosulphate (IV) salts | | Smell of hydrogen sulphide | Sulphides | | Supmae | | | | |---------------|-------------------------------|--|--| | | | | | | Deliquiescent | Chloride or trioxonitrates(V) | | | | Brick reen | Pb2, | |-------------------------------------|---------------------------------------| | Deep green | nellow Nat | | Blue golden | K. | | Persistent lilac Persistent light g | reen Baza | | 1-10111 20 - | | | Pelo | Heating | | Gases Evolved or | Inference | | Gas | NO ₃ - present | | NO ₂ | CO32- or HCO3 present | | CO ₂ | NO ₃ - present | | 0, | SO ₃ ²⁻ present | | SO ₂ | NH ₄ ⁺ present | Cu24 Floring Colour from Brick red ## Action of heat on specimen Observation | Observation | Zn ²⁺ (ZnO) present | |--|---| | White when cold and yellow when hot | Pb ²⁺ (PbO) | | Yellow when cold and reddish brown when hot | Fe^{3+} (Fe_2O_3) | | Peddish brown | Hydrated salts HCO ₃ or OH present | | Water vapour which condenses at the upper part of the tube | Ammonium salt | | White sublimate | / Miles | NH, Inference ## Test For Gases | Gas | Colour/smell | Test | Result if Lasitive | |-----------------|---|--|---| | CI ₂ | Greenish-yellow, pungent | (a) Moist blue litmus paper (b) Bubble through bromine solution | Turns red then bleaches it (acid
Bromine is liberated and solution
turns yellow or orange | | NO ₂ | Reddish brown, pungent | (a) Moist blue litmus paper (b) Bubble through fresh FeSO ₄ solution | Turns red (acidic) Solution turns blue | | NH ₃ | Colourless pungent smell like that of urine | (a) Moist red litmus paper (b) Bring in contact with drop of conc HCI on a glass rod | Turns blue (alkaline gas) White dense fumes due to the | | H,S | Colourless, rotten egg smell | Moist lead (II) ethanoate paper | Presence of NH ₄ CI Turns black | | Zn ²⁺ | No ppt | No ppt | White
gelatinous
ppt soluble
in excess
reagent | gelatinous ppt soluble in excess reagent No ppt, | No ppt | No ppt | No ppl | |------------------|----------------|--|---|--|---|--|---------------------------| | Ca ²⁺ | No ppt No ppt | No ppt (may
have slight
turbidity) | excess NaOH(aq) Dirty green gelatinous ppt | turbidity due to CO ₃ in reagent Dirty green gelatinous ppt insoluble in | Dirty green
gelatinous
ppt | Slight ppt
or non | No ppl | | Fe ³⁺ | No ppt | No ppt | insoluble in excess reagent Reddish brown gelatinous ppt insoluble in excess reagent | excess Reddish brown gelatinous ppt insoluble in excess NH ₃ (aq) | Reddish
brown
gelatinous
ppt | Yellow to pale-green with yellow deposit Fe ³⁺ → Fe ²⁺ | Yellow
to pale-
ppt | | Cu ²⁺ | No ppt | No ppt | Light blue
gelatinous ppt
in excess
reagent | Light blue
gelatinous
ppt soluble
in excess
giving deep
blue solution | Light blue
ppt which
dissolves in
excess giving
a deep blue
solution | Black ppt | Black p | ## Confirmatory tests for cations | Co | Confirmatory lests for cations | | | | | | |----|---|---|---|--|--|--| | | Test | Observation | Inference | | | | | 1. | To the aqueous solution, add ammonium trioxocarbonate(IV) or ammonium oxalate | White precipitate | Ca ²⁺ confirmed | | | | | 2 | To an aqueous solution is added ammonia solution and ammonium chloride solution | White precipitate | AI3+ confirmed | | | | | 3 | (a) To an aqueous solution add potassium tetraoxochromate(VI) solution (K ₂ CrO ₄) (b) Solution + potassium iodide solution (Kl(aq)) | (a) Light blue precipitate (b) Deep blue precipitate (a) Deep blue precipitate (b) Deep blue precipitate (b) Deep blood red | Pb ²⁺ present | | | | | 4 | (a) To the solution, add potassium hexacyanoferrate(II) solution K_4 Fe(CN) ₆ (aq) (b) To the solution add potassium hexacyanoferrate(III) solution K_3 Fe(CN) ₆ (aq) | | Pb ²⁺ present Fe ²⁺ present | | | | | 5 | (a) To the specimen solution add potassium hexacyanoferrate(II) solution (b) To the specimen solution add potassium thiocyanate solution (KSCN(aq)) or ammonium thiocyanate solution | | Fe ³⁺ present | | | | | | Specimen solution + potassium
hexacyanoferrate(II) solution (K ₄ Fe(CN) ₆) | Brown ppt | Fe ³⁺ present | | | | | - | Mehammin and Customins book is | | Cu2+ present | | | | | SO ₂ | Colourless, pungent smell S gives the same result to | (a) Damp blue litmus paper (b) Bubble through K₂Cr₂O₇ acidified with dil. H₂SO₄ (c) Bubble through KMnO₄ solution acidified with K₂Cr₂O₇ and KMnO4 all acidifield but | Turns red (acidic) Turns from orange to green Turns from purple to colourless (reducing agent) t there will be yellow deposit of sulphur | |---------------------|---|---|--| | HCI(g) | Colourless | (a) Damp blue litmus paper (b) Blow across mouth of test tube (c) Bring in contact with drop of ammonia solution on a glass rod | Turns red (acidic) Copious fuming White dense fume of ammonium chloride | | CO ₂ | Colourless
Odourless | (a) Damp blue litmus paper(b) Bubble through lime water in excess of it | Turns red (acidic) Turns milky (ppt of CaCO ₃) milky colour disappears due to formation of CaHCO ₃ | | O ₂ | Colourless
Odourless | (a) Damp blue and red litmus paper (b) Glowing splint | No change (neutral) Ignites or rekindles glowing splint | | H ₂ | Colourless
Odourless | (a) Damp blue or red litmus paper (b) Lighted splint | No effect (neutral gas) Little explosion occurs giving pop sound; burns with blue flame, if mixed with air | | H ₂ O(g) | Colourless
Odourless | (a) Damp blue or red litmus paper (b) Anhydrous CuSO ₄ (white in colour) | No change (neutral gas) It turns to blue crystal of CuSO ₄ 5H ₂ O | ## Test For Cations | Cation | | | Reacti | ons With | | | | |------------------|--|-------------------------------------|--|---|--|------------------|------------------------------| | | Dil.HCI | Dil. H ₂ SO ₄ | Dil. NaOH | Dil. NH ₃ | NH ₄ CI+dil.
NH ₃ | H ₂ S | H ₂ S/dil.
HCI | | Pb ²⁺ | White crystalline ppt dissolving when warmed, reappears on cooling | White
powdery
ppt | White
powdery
ppt soluble
in excess | White
powdery
ppt
insoluble
in excess | White
crystalline
ppt on
adding
NH ₄ CI | Black ppt | Black ppt | | AI3+ | No
precipitate | No ppt | White gelatinous ppt soluble in excess reagent | White gelatinous ppt insoluble in excess reagent | White
gelatinous
ppt | No ppt | No ppt | | | Test | | | | |------------------|---|--|--|--| | i. | 7nSO (20) + B2CI (20) and the | Observation | | | | | ZnSO ₄ (aq) + BaCI ₂ (aq) and then + dilute HCI in excess | White precipitate | | | | ii. | ZnSO ₄ (aq) + NaOH(aq) in drops and then in excess | Precipitate insoluble | | | | 1 | | White precipitate | | | | iii. | ZnSO ₄ (aq) + NH ₃ (aq) in drops and then in excess | Precipitate dissolved/colourless solution formed | | | | ш. | | White precipitate | | | | | | Precipitate dissolved/colourless solution formed | | | | RELIVES NAMED IN | Market Co. St. St. St. St. St. St. St. St. St. St | | | | | Test | Observation | Inference | |---|--|--| | C + NaOH(aq)+ heat | Colourless gas with choking smell. Gas produced dense white fumes with concentrated HCI/gas turned red litmus paper blue | Gas is NH ₃ from NH ₄ ⁺ | | C+BaCl ₂ (aq) + dil HCI in excess | White precipitate. Precipitate remained/precipitate insoluble in dilute HCI | SO ₄ ² · or CO ₃ ² · or SO ₃ ² · | | | | SO ₄ ²⁻ present | | i. D + litmus paper | Red litmus paper turned blue | D is alkaline | | ii. D + NaOH(aq) in drops; then in excess | White precipitate insoluble in excess | Ca ²⁺ present (accept Mg ²⁺) | | iii. D shaken with soap solution | No lather formation/scum was formed with D | Hardness in D due to presence of Ca ²⁺ /Mg ²⁺ | | Distilled water shaken with the soap solution | Lather formed easily with distilled water | |